色色综合资源,亚洲、欧美、都市、激情、校园、乱伦,憨豆网现在改名叫啥,一级黄色日逼视频

當前位置: 首頁 > CAS號數據庫 > 409-21-2 > 409-21-2 / 碳化硅材料研究現狀與行業應用

手機掃碼訪問本站

微信咨詢

409-21-2 / 碳化硅材料研究現狀與行業應用

半導體器件是現代工業整機設備的核心,廣泛應用于計算機、消費類電子、網絡通信、汽車電子等核心領域,半導體器件產業主要由四個基本部分組成:集成電路、光電器件、分立器件、傳感器,其中集成電路占到了80%以上,因此通常又將半導體和集成電路等價。

集成電路,按照產品種類又主要分為四大類:微處理器、存儲器、邏輯器件、模擬器件。然而隨著半導體器件應用領域的不斷擴大,許多特殊場合要求半導體能夠在高溫、強輻射、大功率等環境下依然能夠堅持使用、不損壞,第一、二代半導體材料便無能為力,于是第三代半導體材料便應運而生。

目前,以碳化硅(SiC)、氮化鎵(GaN)、氧化鋅(ZnO)、金剛石、氮化鋁(AlN)為代表的寬禁帶半導體材料以更大的優勢占領市場主導,統稱第三代半導體材料。第三代半導體材料具有更寬的禁帶寬度,更高的擊穿電場、熱導率、電子飽和速率及更高的抗輻射能力,更適合于制作高溫、高頻、抗輻射及大功率器件,通常又被稱為寬禁帶半導體材料(禁帶寬度大于2.2eV),亦稱為高溫半導體材料。從目前第三代半導體材料和器件的研究來看,較為成熟的是碳化硅和氮化鎵半導體材料,且碳化硅技術最為成熟,而氧化鋅、金剛石、氮化鋁等材料的研究尚屬起步階段。

碳化硅材料研究現狀與行業應用

一、材料及其特性

碳化硅材料普遍用于陶瓷球軸承、閥門、半導體材料、陀螺、測量儀、航空航天等領域,已經成為一種在很多工業領域不可替代的材料。

SiC是一種天然超晶格,又是一種典型的同質多型體。由于Si與C雙原子層堆積序列的差異會導致不同的晶體結構,有著超過200種(目前已知)同質多型族。因此SiC非常適合用作新一代發光二極管(LED)襯底材料、大功率電力電子材料。

二、加工工藝研究

SiC的硬度僅次于金剛石,可以作為砂輪等磨具的磨料,因此對其進行機械加工主要是利用金剛石砂輪磨削、研磨和拋光,其中金剛石砂輪磨削加工的效率最高,是加工SiC的重要手段。但是SiC材料不僅具有高硬度的特點,高脆性、低斷裂韌性也使得其磨削加工過程中易引起材料的脆性斷裂從而在材料表面留下表面破碎層,且產生較為嚴重的表面與亞表層損傷,影響加工精度。因此,深入研究SiC磨削機理與亞表面損傷對于提高SiC磨削加工效率和表面質量具有重要意義。

1、硬脆材料的研磨機理

對硬脆材料進行研磨,磨料對其具有滾軋作用或微切削作用。磨粒作用于有凹凸和裂紋的表面上時,隨著研磨加工的進行,在研磨載荷的作用下,部分磨粒被壓入工件,并用露出的尖端劃刻工件的表面進行微切削加工。另一部分磨粒在工件和研磨盤之間進行滾動而產生滾軋作用,使工件的表面形成微裂紋,裂紋延伸使工件表面形成脆性碎裂的切屑,從而達到表面去除的目的。

因為硬脆材料的抗拉強度比抗壓強度要小,對磨粒施加載荷時,會在硬脆材料表面的拉伸應力的最大處產生微裂紋。當縱橫交錯的裂紋延伸且相互交叉時,受裂紋包圍的部分就會破碎并崩離出小碎塊。此為硬脆材料研磨時的切屑生成和表面形成的基本過程。

由于碳化硅材料屬于高硬脆性材料,需要采用專用的研磨液,碳化硅研磨的主要技術難點在于高硬度材料減薄厚度的精確測量及控制,磨削后晶圓表面出現損傷、微裂紋和殘余應力,碳化硅晶圓減薄后會產生比碳化硅晶圓更大的翹曲現象。

2、碳化硅的拋光加工研究

目前碳化硅的拋光方法主要有:機械拋光、磁流變拋光、化學機械拋光(CMP)、電化學拋光(ECMP)、催化劑輔助拋光或催化輔助刻蝕(CACP/CARE)、摩擦化學拋光(TCP,又稱無磨料拋光)和等離子輔助拋光(PAP)等。

化學機械拋光(CMP)技術是目前半導體加工的重要手段,也是目前能將單晶硅表面加工到原子級光滑最有效的工藝方法,是能在加工過程中同時實現局部和全局平坦化的唯一實用技術。

碳化硅材料研究現狀與行業應用

三、碳化硅材料的應用

1. 在半導體領域的應用

碳化硅一維納米材料由于自身的微觀形貌和晶體結構使其具備更多獨特的優異性能和更加廣泛的應用前景,被普遍認為有望成為第三代寬帶隙半導體材料的重要組成單元。

第三代半導體材料即寬禁帶半導體材料,又稱高溫半導體材料,主要包括碳化硅、氮化鎵、氮化鋁、氧化鋅、金剛石等。這類材料具有寬的禁帶寬度(禁帶寬度大于2.2ev)、高的熱導率、高的擊穿電場、高的抗輻射能力、高的電子飽和速率等特點,適用于高溫、高頻、抗輻射及大功率器件的制作。第三代半導體材料憑借著其優異的特性,未來應用前景十分廣闊。

2. 在光伏領域的應用

光伏逆變器對光伏發電作用非常重要,不僅具有直交流變換功能,還具有最大限度地發揮太陽電池性能的功能和系統故障保護功能。歸納起來有自動運行和停機功能、最大功率跟蹤控制功能、防單獨運行功能(并網系統用)、自動電壓調整功能(并網系統用)、直流檢測功能(并網系統用)、直流接地檢測功能(并網系統用)等。

國內逆變器廠家對新技術和新器件的應用還是太少,以碳化硅為功率器件的逆變器,并且開始大批量應用,碳化硅內阻很少,可以把效率做很高,開關頻率可以達到10K,也可以節省LC濾波器和母線電容。碳化硅材料在光伏逆變器應用上或有突破。

3. 在航空領域的應用

碳化硅制作成碳化硅纖維,碳化硅纖維主要用作耐高溫材料和增強材料,耐高溫材料包括熱屏蔽材料、耐高溫輸送帶、過濾高溫氣體或熔融金屬的濾布等。用做增強材料時,常與碳纖維或玻璃纖維合用,以增強金屬(如鋁)和陶瓷為主,如做成噴氣式飛機的剎車片、發動機葉片、著陸齒輪箱和機身結構材料等,還可用做體育用品,其短切纖維則可用做高溫爐材等。

碳化硅粗料已能大量供應,但是技術含量極高 的納米級碳化硅粉體的應用短時間不可能形成規模經濟。碳化硅晶片在我國研發尚屬起步階段,碳化硅晶片在國內的應用較少,碳化硅材料產業的發展缺乏下游應用企業的支撐。就人才培養和技術研發等開展密切合作;加強企業間的交流,尤其要積極參加國際交流活動,提升企業發展水平;關注企業品牌建設,努力打造企業的拳頭產品等。

全球半絕緣碳化硅晶圓材料市場的發展趨勢。半絕緣襯底具備高電阻的同時可以承受更高的頻率,因此在5G通訊和新一代智能互聯,傳感感應器件上具備廣闊的應用空間。當前主流半絕緣襯底的產品以4英寸為主。2017年,全球半絕緣襯底的市場需求約4萬片。預計到2020年,4英寸半絕緣襯底的市場保持在4萬片,而6英寸半絕緣襯底的市場迅速提升至4~5萬片;2025~2030年,4英寸半絕緣襯底逐漸退出市場,而6英寸晶圓將增長至20萬片。

國際上碳化硅單晶襯底材料的產業化公司主要有美國科銳(Cree)、II-VI、道康寧(Dow Corning),德國SiCrystal(被日本羅姆Rohm收購)等公司,其碳化硅單晶產品覆蓋4英寸和6英寸。

國內主要碳化硅單晶襯底材料企業和研發機構已經具備了成熟的4英寸零微管碳化硅單晶產品,并已經研發出了6英寸單晶樣品,但是在晶體材料質量和產業化能力方面距離國際先進水平存在一定差距